

Product Specifications

Customer	
Model Name	TFT029B101A
Description	320(RGB)x120 Dots
Description	2.9" TFT LCD
Date	2017/3/17
Revision	1.0

	Customer Approval					
Date						

Engineering						
Check Date Prepared Date						
Sam huang	2017/3/17	Jack guo	2017/3/17			

Table of Contents

1 Record of Revision	3
2 General Specifications	4
3 Input/Output Terminals	
4 Absolute Maximum Ratings	
5 Electrical Characteristics	7
6 Interface Timing	9
7 Optical Characteristics	18
8 Environmental / Reliability Tests	
9 Mechanical Drawing	23
10 Packing	24
11 Precautions For Use of LCD modules	25

1 Record of Revision

Rev	Issued Date	Description	Editor
1.0	2017/3/17	First Release.	Jack Guo

2 General Specifications

	Feature	Spec		
	Size	2.9inch		
	Resolution	320(horizontal)*120(Vertical)		
	Interface	RGB 18bit		
	Connect type	Connector		
	Color Depth	262k		
Characteristics	Technology type	a-Si		
Characteristics	Display Spec. Pixel pitch (mm)	0.2205 x 0.2205		
	Pixel Configuration	R.G.B. Vertical Stripe		
	Display Mode	Normally White		
	Driver IC	SSD2116Z		
	Surface Treatment	HC		
	Viewing Direction	12 O'clock		
	LCM (W x H x D) (mm)	76.90*38.22*3.26		
	Active Area(mm)	70.56 x 26.46		
Mechanical	With /Without TSP	Without TSP		
	Weight (g)	TBD		
	LED Numbers	6 LEDs		

Note 1: RoHS

Note 2: LCM weight tolerance: +/- 5%

3 Input/Output Terminals

No.	Symbol	Description
1,2	VBL-	Backlight LED Cathode
3,4	VBL+	Backlight LED Anode.
5	Y1(YU)	Touch panel up side
6	X1(XR)	Touch panel right side
7	NC	NC NC
8	RESET	Reset Signal pin
9	CS	Chip select
10	SCL	Serial Clock.
11	SDA	Serial Data Input
12	SDO	Serial Data output
13	NC	NC
14~19	B0~B5	Data bus
20,21	NC	NC
22~27	G0~G5	Data bus
28,29	NC	NC
30~35	R0~R5	Data bus
36	HSYNC	Line Synchronous Signal
37	VSYNC	Frame Synchronous Signal
38	DOTCLK	Dot-clock signal and oscillator source
39	GND	Ground
40	IOVCC	Voltage input pin for logic
41	VDD	Booster input voltage pin
42	VDD	Booster input voltage pin
43	Y2(YD)	Touch panel down side
44	X2(XL)	Touch panel Left side
45-51	NC	NC
52	DEN	Display enable pin for controller
53	GND	Ground
54	GND	Ground

4 Absolute Maximum Ratings

Driving TFT LCD Panel

Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{DDIO} +0.3	٧	Note 2
Logic I/O power supply voltage	V _{DDIO}	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	V _{CI}	Ta = 25°C	AGND-0.3 ~ +5.0	٧	
Temperature for storage	Tstg		-30 ~ +80	°C	Note 3
Temperature for operation	Topr	-	-20 ~ +70	°C	Note 3, 4
LED input electric current	I _{LED}	Ta = 25°C	70	mA	Note 5
LED electricity consumption	P _{LED}	Ta = 25°C	238	mW	Note 5

- Note 2) REST, CSB, SDI, SCK, DEN, B7~B0, G7~G0, R7~R0, VSYNC, HSYNC, DOTCLK
- Note 3) Humidity: 95%RH Max. (Ta = 40°C)

 Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.
- Note 4) Panel surface temperature prescribes.
- Note 5) Power consumption of one LED (Ta = 25°C) (use 6 pieces LED)

5 Electrical Characteristics

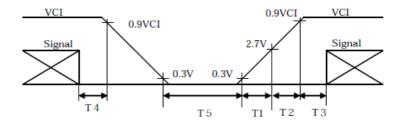
5.1 Driving TFT LCD Panel

Ta = 25°C

							1a = 25
Item		Symbol	Min.	Тур.	Max.	Unit	Remarks
Logic I/O	DC voltage	V_{DDIO}	+2.5	+3.3	+3.6	V	
power supply	DC Current	I _{VDDIO}	-	0.35	0.50	mA	Note 6
Analog	DC voltage	V _{CI}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VCI}	-	13	18	mA	Note 6
Permis	sive input	V _{RFVDDIO}	-	-	100	mVp-p	Note 7
Ripple	voltage	V_{RFVCI}	-	-	100	mVp-p	Note 7
Logic	High	V _{IH}	0.8 V _{DDIO}	-	V _{DDIO}	V	Note 8
Input Voltage	Low	V _{IL}	0		0.2 V _{DDIO}	V	Note 8
Logic	High	I _{IH}	-1		1	μA	Note 8
Input Current	Low	I _{IL}	-1		1	μA	Note 8

Note 6) $V_{DDIO} = V_{CI} = +3.3V$

Current situation for I_{VDDIO}: Black & White checker flag pattern


Current situation for I_{VCI}: All black patterns

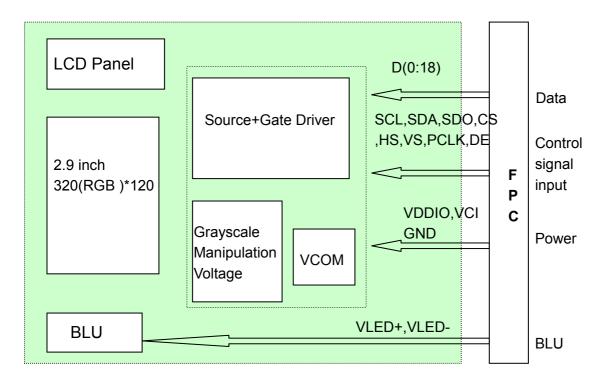
Note 7) $V_{DDIO} = V_{CI} = +3.3V$

Note 8) REST, CSB, SDI, SCK, DEN, B7~B0, G7~G0, R7~R0, VSYNC, HSYNC, DOTCLK

Input voltage sequence

0<T1≦15 m s 0<T2≦10 m s 0<T3≦100 m s 0<T4≦1 s T5>200 m s

5.2 Driving Backlight


Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I_{F}	-	20	-	mA	
Forward Voltage	V_{F}	17.6	19.2	20.8	V	Constant current
Backlight Power consumption	$W_{ m BL}$	-	TBD	-	W	

- Note 1: Each LED: IF =20 mA, VF =3.2V.
- Note 2: Optical performance should be evaluated at Ta=25°C only.
- Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Figure: LED connection of backlight

5.3 Block Diagram

6 Interface Timing

6.1 DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _{DDEXT}	System power supply pins of the logic block	Recommend Operating Voltage Possible Operating Voltage	1.6	-	3.6	v
V_{DDIO}	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	1.6	-	3.6	v
VcI	Booster Reference Supply Voltage Range (3)	Recommend Operating Voltage Possible Operating Voltage	2.5 or V _{DDIO}	-	3.6	v
$I_{\text{sleep}}1$	Sleep mode current (VCI pin)		-	30	50	uA
$I_{\text{sleep}}2$	Sleep mode current (VDDEXT+VDDIO)	VDDEXT=VDDIO=1.875V, VCI=2.775V	-	1	50	uA
I_{dp}	Operating mode current	100pF loading at Source output VDDEXT=VDDIO=1.875V, VCI=2.775V	-	3	5	mA
V_{CIM}	Negative V _{CI} Output Voltage	No panel loading	-V _{CI}	-	-	V
V _{CIX2}	V _{CIX2} primary booster efficiency ¹	No panel loading, ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	90	95	6.1	% V
		No panel loading; 4x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	84	89.5	-	%
$V_{G\!H}$	Gate driver High Output Voltage Booster efficiency ²	No panel loading; 5x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	80	88.5	-	%
		No panel loading; 6x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	72	80	-	%
V_{GL}	Gate driver Low Output Voltage		- V _{GH}	-	-7.3	V
V_{COMH}	VCOM High Output Voltage		VCI	-	99% x VLCD63	v
V_{COML}	VCOM Low Output Voltage		V _{CIM} +0.5	-	-	V
V_{COMA}	VCOMA		-	-	6.0 or VCIX2-0.1	v
	VCOM Amplutide V _{COMH} - V _{COML}		-	-	6.0 or VCIX2-0.1	v
V_{LCD63}	V _{LCD63} Output Voltage ³		-	-	6.0 or VCIX2-0.1	v
ΔV_{LCD63}	Max. Source Voltage Variation		-2	-	2	%
VOH1	Logic High Output Voltage	Iout=-100 A	0.9 * V _{DDIO}	-	V_{DDIO}	V
VOL1	Logic Low Output Voltage	Iout=100 A	0	-	0.1 * V _{DDIO}	V
VIH1	Logic High Input voltage		0.8 * V _{DDIO}	-	V_{DDIO}	V
VIL1	Logic Low Input voltage		0	-	0.2 * V _{DDIO}	V
I _{OH}	Logic High Output Current Source	$Vout = V_{DDIO}-0.4V$	50	-	-	μA
I _{OL}	Logic Low Output Current Drain	Vout = 0.4V	-	-	-50	μA
I_{OZ}	Logic Output Tri-state Current Drain Source		-1	-	1	μΑ
$I_{\Pi}/I_{\Pi H}$	Logic Input Current		-1	-	1	μA
C _{IN}	Logic Pins Input Capacitance		-	5	7.5	pF
R _{SON}	Source drivers output resistance		-	1	-	kΩ
R _{GON}	Gate drivers output resistance		-	500	-	Ω
R _{CON}	VCOM output resistance		-	200	-	Ω
TC	Temperature Coefficient		-	-0.01	_	%

Notel:

$$\begin{split} &V_{\text{CIX2}} \text{ efficiency} = V_{\text{CIX2}} / (2 \text{ x } V_{\text{CI}}) \text{ x } 100\% \\ &V_{\text{GH}} \text{ efficiency} = V_{\text{GH}} / (V_{\text{CI}} \text{ x } \text{ n}) \text{ x } 100\% \\ &V\text{CIX2} - VL\text{CD63} \ge 0.1V \end{split}$$
Note2: (where n = booster factor)

Note3:

6.2 AC Characteristics

AC Characteristics (Unless otherwise specified, Voltage Referenced to V_{SS} , $V_{DDIO} = 1.875V$, $T_A = -40$ to $85^{\circ}C$)

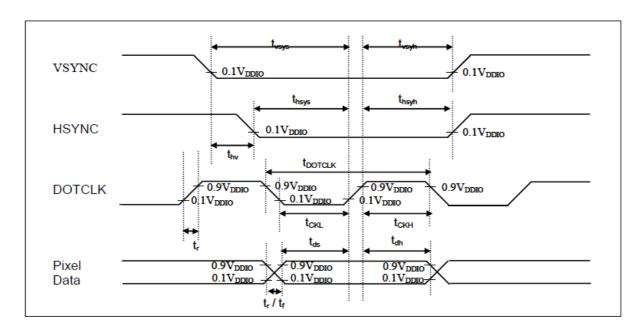


Figure 15-1- Pixel Clock Timing

Characteristics	Symbol	Min	Тур	Max	Units
DOTCLK Frequency	f _{DOTCLK}	-	5.0	8.6	MHz
DOTCLK Period	t _{DOTCLK}	116	200	-	nSec
Vertical Sync Setup Time	t _{vsys}	20	1	-	nSec
Vertical Sync Hold Time	t_{vsyh}	20	-	-	nSec
Horizontal Sync Setup Time	t _{hsys}	20	-	-	nSec
Horizontal Sync Hold Time	t _{hsyh}	20	-	-	nSec
Phase difference of Sync Signal Falling Edge	$t_{ m hv}$	0	-	320	t _{DOTCLK}
DOTCLK Low Period	t _{CKL}	58	-	-	nSec
DOTCLK High Period	t _{CKH}	58	-	-	nSec
Data Setup Time	t _{ds}	30	-	-	nSec
Data hold Time	t _{dh}	30	-	-	nSec
Reset pulse width	t _{RES}	10	-	-	uSec
Rise / Fall time	t_r / t_f	-	-	100	nSec

Note: External clock source must be provided to DOTCLK pin of SSD2116Z. The driver will not operate if absent of the clocking signal.

H_{cycle} = 336 -HDISP = 320 $t_{HFP} = 8$ **HYSNC** DEN Pixel ---- D317 D318 D319 Dummy Dummy Data a) Horizontal Data Transaction Timing V_{cycle} = 244 Lines $t_{VBP} = 2$ **VYSNC** $t_{VFP} = 2$ VDISP = 240 Lines **HSYNC** Line 0 Line 239 DEN b) Vertical Data Transaction Timing

Figure 15-2 Data Transaction Timing in Normal Operating Mode (262k-color)

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK Frequency	f _{DOTCLK}	[-]	5.0	8.6	MHz
DOTCLK Period	t _{DOTCLK}	116	200	1531	nSec
Horizontal Frequency (Line)	f_{H}	(1-)	14.9	(2)	kHz
Vertical Frequency (Refresh)	f_V	85	60.9	17.1	Hz
Horizontal Back Porch	t _{HBP}		8	121	tDOTCLK
Horizontal Front Porch	t _{HFP}		8	-	tDOTCLK
Horizontal Data Start Point	t _{HBP}	102	8	2	tDOTCLK
Horizontal Blanking Period	$t_{HBP} + t_{HFP}$	-	16	-	tDOTCLK
Horizontal Display Area	HDISP		320	11=1	tDOTCLK
Horizontal Cycle	H _{cycle}	12	336	511	tDOTCLK
Vertical Back Porch	t_{VBP}	10.70	2	126	Line
Vertical Front Porch	t _{VFP}	(102)	2	126	Line
Vertical Data Start Point	t_{VBP}		2	126	Line
Vertical Blanking Period	$t_{VBP} + t_{VFP}$	100	4	252	Line
Vertical Display Area	VDISP	12	240	(<u>1</u>	Line
Vertical Cycle	V_{cycle}	8-0	244	553	Line

V_{cycle} = 244 Lines

V_{cycle} = 244 Lines

VDISP = 240 Lines

t_{VFP} = 2

HSYNC

Line 0

VPBP

VPDSP

DEN

Figure 15-3- Synchronization Signals Timing in Power Save Mode (8 color)

Characteristics	Symbol	Min	Тур	Max	Units
DOTCLK Frequency	f _{DOTCLK}	-	5.0	8.6	MHz
DOTCLK Period	t _{DOTCLK}	116	200	-	nSec
Horizontal Frequency (Line)	\mathbf{f}_{H}	-	14.9	-	kHz
Vertical Frequency (Refresh)	f_V	-	60.9	-	Hz
Vertical Partial Back Porch	VPBP	0	626	239	Line
Vertical Active Area	VPDSP	1	9-1	240	Line
Vertical Back Porch	t _{VBP}	-	2	126	Line
Vertical Front Porch	t _{VFP}	-	2	126	Line
Vertical Display Area	VDISP	-	240	-	Line
Vertical Cycle	V _{cycle}	-	244	-	Line

Note: When entered to 8-color display mode, the RGB graphic data through the interface pins RR5, GG5 and BB5 are valid within the Vertical Active Area. Data "0" will be displayed outside the Vertical Active Area.

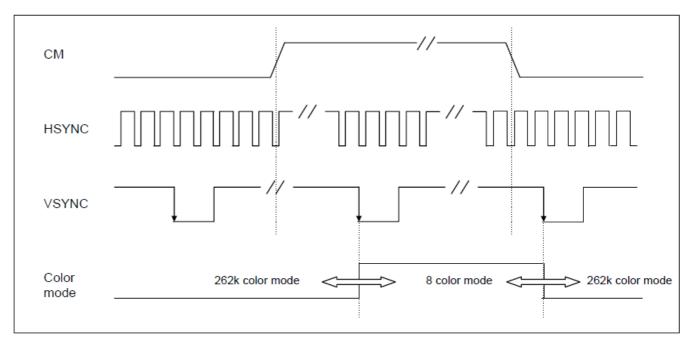


Figure 15-4- Color Mode Conversion Timing

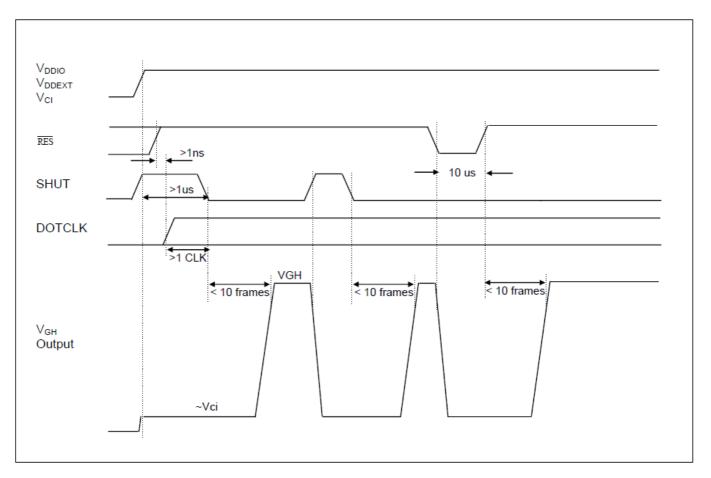


Figure 15-5- VGH Output against SHUT & RESB

Notel: The minimum cycle time of SHUT is 10 + 2 frames.

Note2: DOTCLK must be provided for boosting of V_{GH} . The above timing diagram assumed voltages and DOTCLK are

continuous supplied after power on.

Note3: V_{GH} will be forced to V_{Gi} at the low stage of \overline{RES} .

Note4: The minimum pulse width of RESET is 10us.

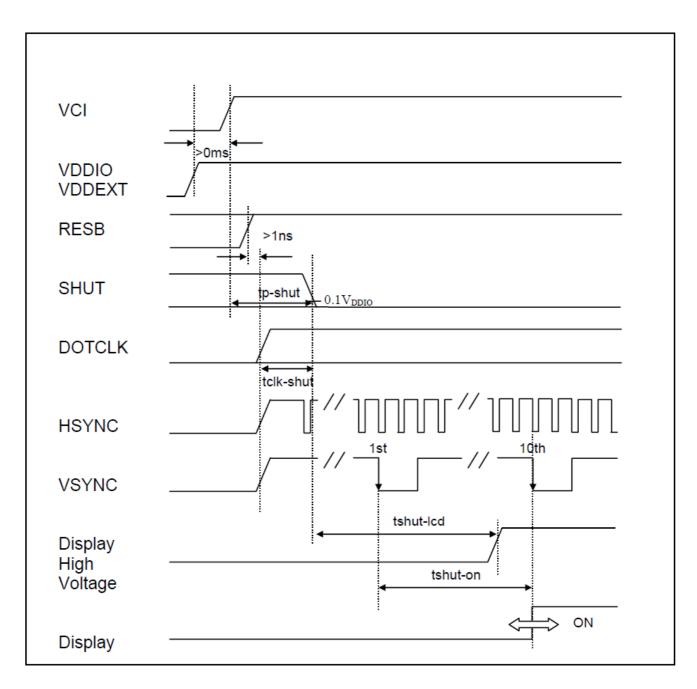


Figure 15-6 - Power Up Sequence

Characteristics	Symbol	Min	Тур	Max	Units
V _{DDEXT} / V _{DDIO} on to falling edge of SHUT	tp-shut	1	-	-	μsec
DOTCLK	telk-shut	1	-	-	clk
Falling edge of SHUT to LCD power on	tshut-lcd	-	-	164	msec
Falling edge of SHUT to display start		-	-	10	frame
1 line: 336 clk	tshut-on				
1 frame: 244 line	tshut-on	-	164	-	msec
DOTCLK = 5.0MHz					

Note1: It is necessary to input DOTCLK before the falling edge of SHUT.

Note2: Display starts at 10^{th} falling edge of VSTNC after the falling edge of SHUT.

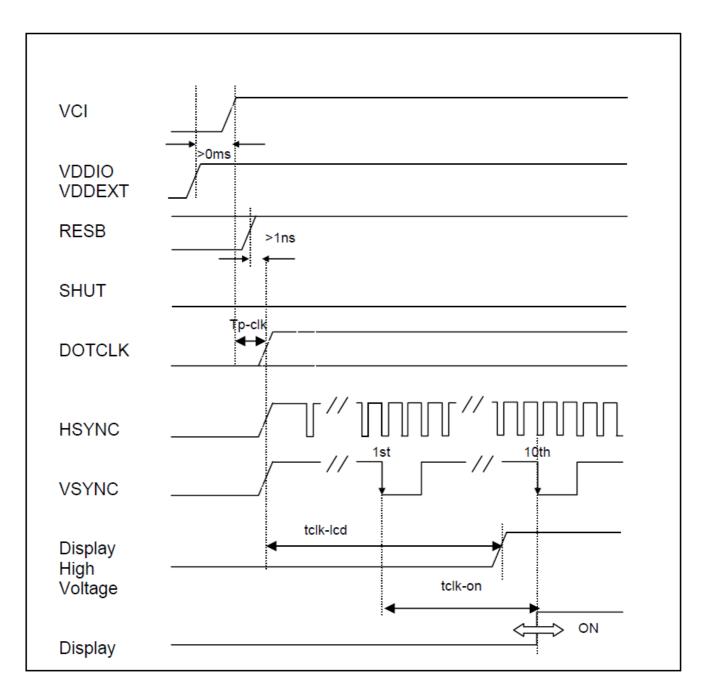


Figure 15-7 - Power Up Sequence (Shut pin tied to ground)

Characteristics	Symbol	Min	Тур	Max	Units
V _{DDEXT} / V _{DDIO} on to rising edge of Dotclk	tp-clk	1	-	-	μsec
Rising edge of Dotclk to LCD power on	tclk-lcd	-	-	164	msec
Rising edge of Dotclk to display start		-	-	10	frame
1 line: 336 clk 1 frame: 244 line	tclk-on	-	164	-	msec
DOTCLK = 5.0MHz					

Note1: Display starts at 10th falling edge of VSYNC after the rising edge of DOTCLK.

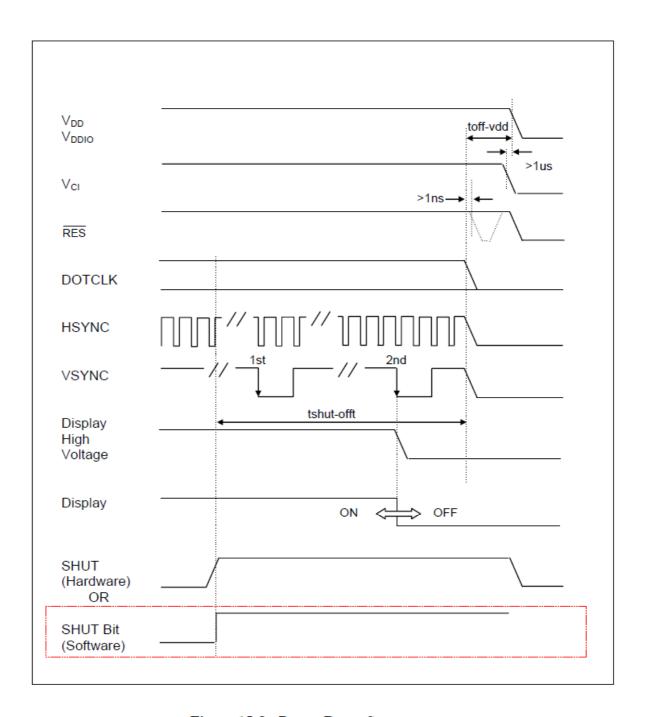


Figure 15-8 - Power Down Sequence

Characteristics	Symbol	Target Min	Target Typ	Target Max	Units
Rising edge of SHUT to display off 1 line: 336 clk	4-14 - 66	2	-	-	frame
1 frame: 244 line PIXCLK = 5.0 MHz	tshut-off	32.8	-	-	msec
Input-signal-off to V _{DDEXT} / V _{DDIO} off	toff-vdd	1	-	-	μsec

Notel: DOTCLK must be maintained at lease 2 frames after the rising edge of SHUT.

Note2: Display become off at the 2nd falling edge of VSTNC after the falling edge of SHUT.

Note3: If RESET signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.

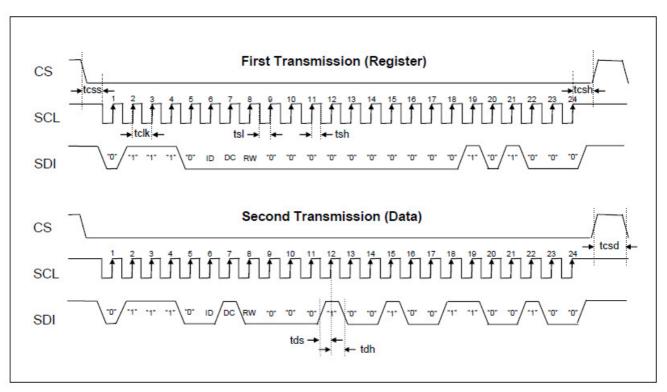


Figure 15-9 - SPI Interface Timing Diagram & Transaction Example

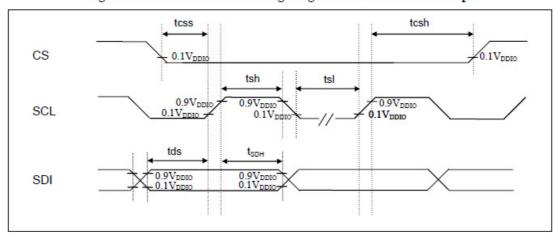


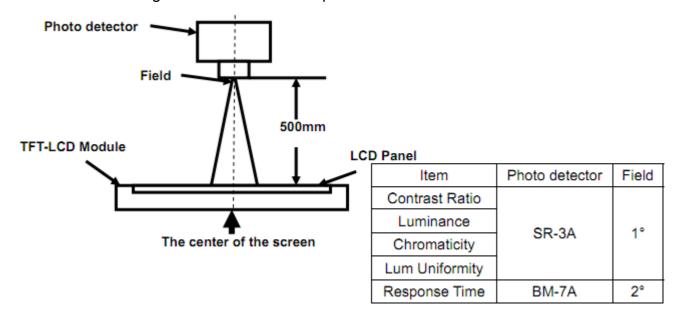
Figure 15-10 - SPI Interface Timing Diagram

Characteristics	Symbol	Min	Тур	Max	Units
Serial Clock Frequency	fclk	-	550	20	MHz
Serial Clock Cycle Time	tclk	50	-	-	nsec
Clock Low Width	ts1	25	(2)	=	nsec
Clock High Width	tsh	25	125		nsec
Chip Select Setup Time	tcss	0	55-03	-	nsec
Chip Select Hold Time	tcsh	10	98	-	nsec
Chip Select High Delay Time	tcsd	20		-	nsec
Data Setup Time	tds	5	1218	2	nsec
Data Hold Time	tdh	10	858		nsec

Notel: The example transmit "0x1264h" to register R28h.

Note2: SPID pin connected to VSS.

7 Optical Characteristics


Items		Symbol	Condition	Min.	Typ.	Max.	Unit	Remark	
				-	40	-			
Viewing angles		θ_{B}	Center	-	60	-	Dagraa	Note2	
viewing ang	ies	θ_{L}	CR≥10	ı	60	-	Degree.	Notez	
		θ_{R}		ı	60	-			
Contrast Rat	io	CR	⊖ =0	100	300	-	-	Note1, Note3	
Dogmongo Tie		Ton	25° C	-	30	45	400.0	Note1,	
Response Ti	ne	T_{OFF}	25 C	-	30	45	ms	Note4	
	White	X_{W}		0.25	0.30	0.35	-		
	willte	Y_{W}		0.27	0.32	0.37	-		
	Red	X_R		0.52	0.57	0.62	-		
Chromoticity	Red	Y_R	Backlight	0.26	0.31	0.36	-	Note1,	
Chromaticity	Craan	X_{G}	is on	0.29	0.34	0.39	-	Note5	
	Green	Y_{G}		0.50	0.55	0.60	-		
	Blue	X_{B}		0.10	0.15	0.20	-		
	Diue	Y_B		0.05	0.10	0.15	-		
Uniformity	,	U		75	80	-	%	Note1, Note6	
NTSC					50		%	Note5	
Luminance		L		-	300	_		Note1, Note7	

Test Conditions:

- 1. IF= 20mA(one channel), the ambient temperature is 25
- 2. The test systems refer to Note 1 and Note 2.

Note 1:Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

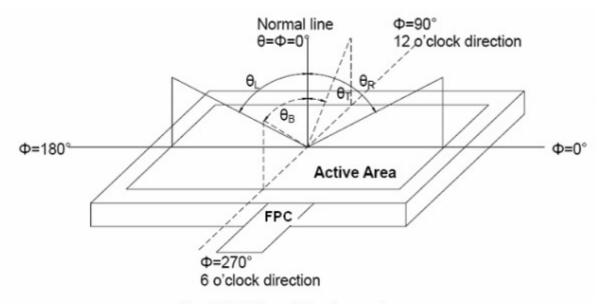
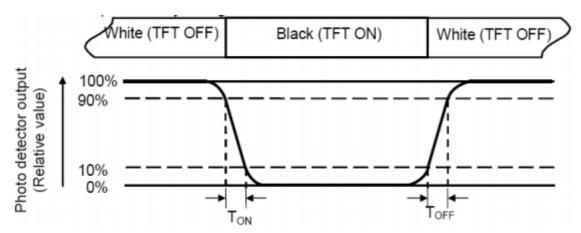


Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state


"White state ":The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L-----Active area length W----- Active area width

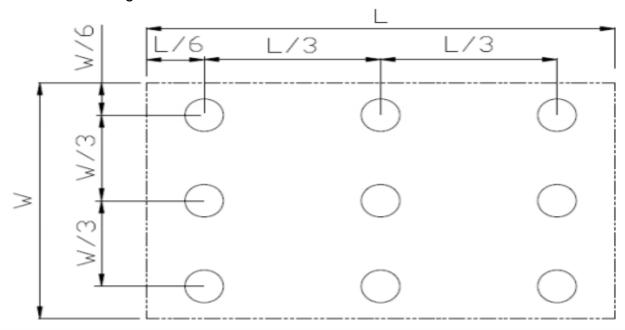
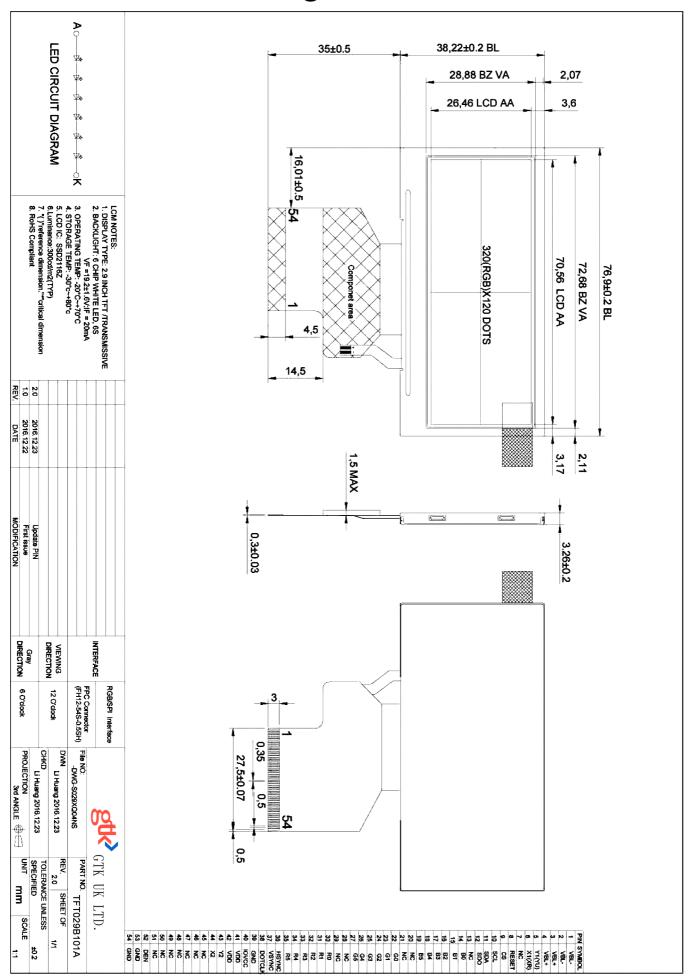


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position. Lmin: The measured minimum luminance of all measurement position.

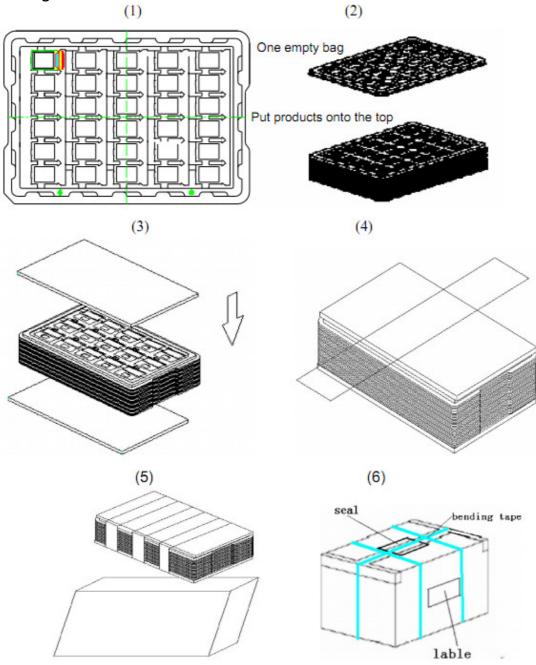
Note 7: Definition of Luminance:

Measure the luminance of state at point.


8 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
	High Temperature		Note 1
1	Operation	$T_S = +70^{\circ}C$, 120hrs	IEC60068-2-2,
	operation		GB2423. 2-89
2	Low Temperature	Ta= -20°C, 120hrs	Note 2 IEC60068-2-1
	Operation	1a -20 C, 120ms	GB2423.1-89
3	High Temperature	$Ta = +80^{\circ}C, 240 hrs$	IEC60068-2-2
3	Storage	1a- +80 C, 240ms	GB2423. 2-89
4	Low Temperature	1a = -30 (1.740) hrs	
4	Storage	orage 1a= -30 C, 240nrs	
5	High Temperature & $Ta=+60^{\circ}\text{C}$, 90% RH max, 160 hours		IEC60068-2-3
3	Humidity Storage	1a− ±00 €, 90% KH Illax, 100 llouis	GB/T2423.3-2006
			Start with cold
	Thermal Shock	20°C 20 min 180°C 20 min	temperature, end with
6		-30° C 30 min $\sim +80^{\circ}$ C 30 min	high temperature
	(Non-operation)	Change time: 5min, 30 Cycle	IEC60068-2-14,
			GB2423.22-87
		C=150pF, R=330 Ω , 5 points/panel	
7	Electro Static Discharge	Air: ± 8 KV, 5 times; Contact: ± 4 KV,	IEC61000-4-2
7	(Opeartion)	5 times; (Environment: 15°C ∼	GB/T17626.2-1998
		35°C, 30% ~ 60%, 86Kpa ~ 106Kpa)	
		Frequency range: 10~55Hz, Stroke:	
	ATT 1: OI	1.mm Sweep: 10Hz~55Hz~10Hz	IEC60068-2-6
8	Vibration (Non-operation)	2 hours for each direction of X .Y. Z.	GB/T2423.5-1995
		(package condition)	
9	Charle (Non anamatic ::)	60G 6ms, \pm X, \pm Y, \pm Z	IEC60068-2-27
9	Shock (Non-operation)	3 times for each direction	GB/T2423.5-1995
10	Doolsoon Dross Tool	Height: 80 cm, 1 corner, 3 edges,	IEC60068-2-32
10	rackage Drop Test	ckage Drop Test 6 surfaces	

Note: 1. T_S is the temperature of panel's surface.


2. Ta is the ambient temperature of sample.

9 Mechanical Drawing

1 0.Packing

Packing Method

- 1. Put module into tray cavity:
- 2. Tray stacking
- 3. Put 1 cardboard under the tray stack and 1 cardboard above:
- 4. Fix the cardboard to the tray stack with adhesive tape:
- 5. Put the tray stack into carton.
- 6. Carton sealing with adhesive tape.

11 Precautions For Use of LCD modules

11.1 Handling Precautions

- 11.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 11.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 11.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 11.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 11.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 11.1.6. Do not attempt to disassemble the LCD Module.
- 11.1.7. If the logic circuit power is off, do not apply the input signals.
- 11.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 11.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 11.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 11.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 11.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2 Storage Precautions

- 12.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 11.2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

11.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3 Inspection Sampling

3.1. Lot size: Quantity per shipment lot per model

3.2. Sampling type: Normal inspection, Single sampling

3.3. Inspection level: II

3.4. Sampling table: MIL-STD-105D

3.5. Acceptable quality level (AQL)

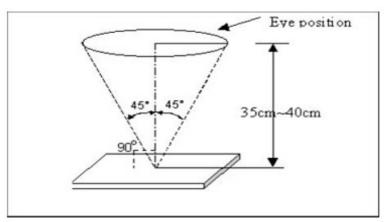
Major defect : AQL=0.65 Minor defect: AQL=1.00

11.4 Inspection Conditions

4.1 Ambient conditions:

a. Temperature: Room temperature $25\pm5\,^{\circ}\mathrm{C}$

b. Humidity: (60 \pm 10) %RH


c. Illumination: Single fluorescent lamp non-directive (300 to 700 Lux)

4.2 Viewing distance

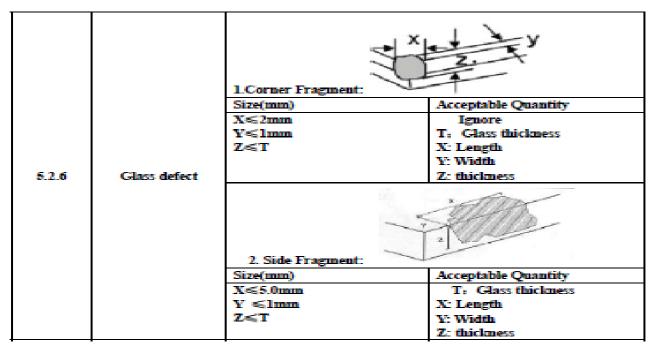
The distance between the LCD and the inspector's eyes shall be at least $35\pm5~$ cm.

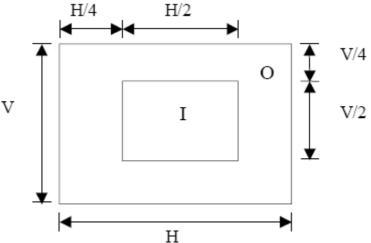
4.3 Viewing Angle

U/D: 45o/45o, L/R: 45o/45o

11.5. Inspection Criteria

Defects are classified as major defects and minor defects according to the degree of defectiveness defined herein.


11.5.1 Major defect


Item No	Items to be inspected	Inspection Standard
5.1.1	All functional defects	1) No display 2) Display abnormally 3) Short circuit 4) line defect
`5.1.2	Missing	Missing function component
5.1.3	Crack	Glass Crack

11.5.2 Minor defect

Item No	Items to be inspected	Inspection standard			
5.2.1	Spot Defect Including Black spot White spot	For dark/white spot is defined $\varphi = (x+y) / 2$ $\xrightarrow{X} \qquad \qquad$			
	Pinhole	Size φ(mm)	Acceptable Quantity		
	Foreign	φ≤0.10	Ignore		
	particle	$0.10 < \phi \leq 0.2$			
		0.2 < φ Not allowed			

5.2.2	Polarizer dirt, particle	Size o(mm)	Acceptab	le Quantity		
	particular	φ≤0.15	1			
	Line Defect	Define:	h			
5.2.3	Including Black line White line	Width(mm) Length(mm)	Acceptal	ble Quantity		
	Scratch	W≤0.05	Ig	gnore		
		0.05 < W≤0.1 L≤1.5		2		
	0.1 < W, or L>1.5	Not	allowed			
5.2.4	Polarizer Dent/Bubble	Not a	llowed			
		平利 and				
5.2.5	Electrical Dot Defect	Two Adjace				
		Inspection pattern: Full white. Full black. Red. green and blue screens				
		Item		ole Quantity		
			I O	Note		
		Black dot defect	2	5mm ≤Distant		
		Bright dot defect	1			
		Two Adjacent Dot	1	THE STATE		
		There or more Adjacent Dot	Not allowed			
	40	Total Dot	2			

Note: 1). Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.

- 2). The distance between two bright dot defects (red, green, blue, and white) should be larger than 15mm.
- 3). The distance between black dot defects or black and bright dot defects should be more than 5mm apart.
 - 4). Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

11.6 Mechanics specification

As for the outside dimension of the modules, please refer to product specification for more details

Note:

- 1). Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.
- 2). The distance between two bright dot defects (red, green, blue, and white)